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Outline

1. Introduction to Molecular Dynamics (MD) and Spatial
Parallelization

2. Introduction to Time-Parallelized (Accelerated) MD

3. An Example of Helium Bubbles in Tungsten

4. Increasing Efficiency of Time-Parallelized MD on GPUs
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Molecular Dynamics (MD) - LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulation (LAMMPS)
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Molecular Dynamics (MD) - LAMMPS

Atomic Configuration

What is the initial positions of my atoms?

Position (A) \
ws
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Large-scale Atomic/Molecular Massively Parallel Simulation (LAMMPS)
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Molecular Dynamics (MD) - LAMMPS

Atomic Configuration

Interatomic Potential

How do the atoms interact?

What is the initial positions of my atoms?

Position (A)
B
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Large-scale Atomic/Molecular Massively Parallel Simulation (LAMMPS)

Potential energy, V

Pauli repulsion

Simple Example potential:
Lennard-Jones

Dipole-dipole attraction

Distance between atoms, r



Molecular Dynamics (MD) - LAMMPS Interatomic Potential

Atomic Configuration How do the atoms interact?

What is the initial positions of my atoms?

Pauli repulsion

Postion (A) Simple Example potential:
' Lennard-Jones

Large-scale Atomic/Molecular Massively Parallel Simulation (LAMMPS)

Potential energy, V

Dipole-dipole attraction
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Distance between atoms, r

Simulation Parameters
Periodic Boundary Conditions? Fixed Atoms? ...
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Molecular Dynamics (MD) - LAMMPS Interatomic Potential

Atomic Configuration How do the atoms interact?
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Molecular Dynamics (MD) - LAMMPS Interatomic Potential

Atomic Configuration How do the atoms interact?

What is the initial positions of my atoms?
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Molecular Dynamics (MD) - LAMMPS Interatomic Potential

Atomic Configuration How do the atoms interact?

What is the initial positions of my atoms?

Pauli repulsion
Postion (A) Simple Example potential:
[ Lennard-Jones

Large-scale Atomic/Molecular Massively Parallel Simulation (LAMMPS)

Potential energy, V

Dipole-dipole attraction

Distance between atoms, r

Temperature Thermostat Dynamics

Thermostatics control the temperature of simulations
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Molecular Dynamics (MD) — Parallelization

Standard Parallelization Method
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Molecular Dynamics (MD) — Parallelization

Standard Parallelization Method

Spatial Parallelization
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Time-Parallel Algorithms — The Idea

‘Continuous’ Picture
Current System State

Position (A)
15
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We don’t care about ‘in-state’ vibrations that don’t advance the dynamics
We only care when we ‘hop’ to an adjacent minima — these are mechanisms which
advance the dynamics
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Time-Parallel Algorithms — The Idea

‘Continuous’ Picture Discrete Picture

Current System State

Position 5(A) Current System State
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Energy Landscape - 2D Example
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We don’t care about ‘in-state’ vibrations that don’t advance the dynamics
We only care when we ‘hop’ to an adjacent minima — these are mechanisms which
advance the dynamics
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Time-Parallel Algorithms — The Idea

In a regime where we are trapped in a minima configuration for a ‘long-time’ before we "hop’ to a new
state we can partition the trajectory that is just vibrating ’in-state’ onto many workers.
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Time-Parallel Algorithms — The Idea

In a regime where we are trapped in a minima configuration for a ‘long-time’ before we "hop’ to a new
state we can partition the trajectory that is just vibrating ’in-state’ onto many workers.

Worker 0: \/{\/ Worker 3:
1

Time-Para:IIeIization

Worker 1: W Worker 4:

Worker 2: Worker 5:

>
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Time-Parallel Algorithms — The Idea

In a regime where we are trapped in a minima configuration for a ‘long-time’ before we "hop’ to a new
state we can partition the trajectory that is just vibrating ’in-state’ onto many workers.
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Time-Parallel Algorithms - Example

Parallel Replica Dynamics (PRD):

BB #4

Replicas: _,\'/\/

BB #4

BB #4

BB #4
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Time-Parallel Algorithms - Example

Parallel Replica Dynamics (PRD):

Replicas:

BB #2
— ]

1: Independent MD is
conducted in Replicas of
the current system state

(atomic configuration)

BB #4

BB #4

BB #4

on ‘workers’
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Time-Parallel Algorithms - Example

Parallel Replica Dynamics (PRD):

Replicas:

BB #2
— ]
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(atomic configuration)
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Time-Parallel Algorithms - Example
Parallel Replica Dynamics (PRD):

Replicas: _,\./\/ BB #4

_.W B8 14

BB #2

ssEe s

1: Independent MD is \'/\/ BB #4 3. New configuration is
conducted in Replicas of propagated to all of our
the current system state w BB #4 workers.

(atomic configuration) Go to step 1.

on ‘workers’
1% Los Alamos

AAAAAAAAAAAAAAAAAA



Time-Parallel Algorithms

Spatial Parallelization
A

1015‘
1012
10°

108

Number of atoms

> \Tinle—ParaIIeI Algorithms
Accélerated MD (AMD)

| | [ | || '] '] \l »

fs ps ns upus ms s ks

103

1% Los Alamos Timescale

AAAAAAAAAAAAAAAAAA



1% Los Alamos

NATIONAL LABORATORY

Some Materials Science...

il
NA‘S-‘% Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 11/13/23 23



Tungsten Divertor Damage

Tokamak

(Toroidal chamber with magnetic coils)

Divertor
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Tungsten Divertor Damage

Tokamak

(Toroidal chamber with magnetic coils)

Divertor



He Bubbles in Tungsten
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He Bubbles in Tungsten
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He Bubbles in Tungsten
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He Bubbles in Tungsten — Bulk W

Accelerated MD used to simulate He Bubble Growth in Tungsten.
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He Bubbles in Tungsten — Bulk W

Accelerated MD used to simulate He Bubble Growth in Tungsten.

Bubble pressure controls loop punching and

OROLCMEE LA A SO, therefore controls surface morphology changes.
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He Bubbles in Tungsten — W GB

Grain Boundaries (GBs) are strong energetic

sinks for defects.

He Bubbles are shown experimentally to

concentrate at GBs.
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He Bubbles in Tungsten — W GB

He, Green: W Interstitial

Blue

20ns

T=

50K atom supercell
400 A100 GPUs with one replica per GPU

Grain Boundaries (GBs) are strong energetic

sinks for defects.

He bubble manually grown at rate of 1 He / 10 ns.
With conventional MD we cap at 15 ns / day.
We want a bubble of size ~ 500 He atoms...

He Bubbles are shown experimentally to

concentrate at GBs.
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He Bubbles in Tungsten — W GB

, 11/13/23 33
Blue: He, Green: W Interstitials, Orange: W vacancy.
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Blue: He, Green: W Interstitia’s, Orange: W vacancy.



He Bubbles in Tungsten — W GB
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He Bubbles in Tungsten — W GB
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He Bubbles in Tungsten — W GB
1 He/ 10ns
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He Bubbles in Tungsten — W GB
1 He/ 10ns 1 He/ 10ps
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He Bubbles in Tungsten — W GB
1 He/ 10ns 1 He/ 10ps
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Dimension

He Bubbles in Tungsten — W GB
1 He/ 10ns 1 He/ 10ps

Bubbles grown at fast
rates result in different
growth behavior and
visual properties.
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He Bubbles in Tungsten — W GB
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He Bubbles in Tungsten — W GB

W Interstitials Generate Dislocation Loops — Decreases Pressure
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He Bubbles in Tungsten — W GB

W Interstitials Generate Dislocation Loops — Decreases Pressure
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He Bubbles in Tungsten — W GB

W Interstitials Generate Dislocation Loops — Decreases Pressure
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GPUs as Weak Scaling Monsters — The New Challenge

GPUs
A .
A GPUs are weak-scaling monsters
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Total Efficiency (Matom-step/s)

GPUs as Weak Scaling Monsters — The New Challenge

300

Need Millions of Atoms in our

207 Simulation to Saturate 1 GPU!!!!
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GPUs as Weak Scaling Monsters

THE DREAM

Turn these weak-scaling
monsters into something
stronger.

In some sense we would like
to Spatially Partition our
GPUs into multiple
simulations.
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GPUs as Weak Scaling Monsters

THE DREAM
GPU

Turn these weak-scaling

monsters into something
stronger. Replica
In some sense we would like
to Spatially Partition our Wasted
GPUs into multiple Compute
simulations.
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GPUs as Weak Scaling Monsters

THE DREAM

GPU

Turn these weak-scaling
monsters into something
stronger.

Replica

In some sense we would like
to Spatially Partition our
GPUs into multiple
simulations.

. Wasted

Compute
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GPUs as Weak Scaling Monsters

THE DREAM

GPU

Turn these weak-scaling
monsters into something
stronger.

Replica

In some sense we would like
to Spatially Partition our
GPUs into multiple
simulations.

. Wasted

Compute
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GPUs as Weak Scaling Monsters

THE DREAM
GPU

Turn these weak-scaling
monsters into something
stronger.

Replica

In some sense we would like
to Spatially Partition our
GPUs into multiple
simulations.

Compute

. Wasted

‘:9 Los Alamos 11/13123 55

AAAAAAAAAAAAAAAAAA



Making Oversubscription Cool
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Making Oversubscription Cool

Multi-Instance GPU (MIG)

Physical subdivision of A100 GPU into
partitions which can be used independently.

Increasing Flexibility
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Making Oversubscription Cool

Multi-Instance GPU (MIG)

Physical subdivision of A100 GPU into
partitions which can be used independently.

Multi-Process Service (MPS)

Logical subdivision of A100 GPU into
partitions which can be used independently.

Increasing Flexibility

1% Los Alamos
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Pascal GP100
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Making Oversubscription Cool H H H H H H H

Multi-Instance GPU (MIG)

Physical subdivision of A100 GPU into MIG
partitions which can be used independently.

Multi-Process Service (MPS)

Logical subdivision of A100 GPU into
partitions which can be used independently.

Increasing Flexibility

LAMMPS Overlapping Simulations

Manipulate LAMMPS Neighbor list to run
multiple replicas in the same simulation box.

‘:9 Los Alamos Pascal GP100 )




Making Oversubscription Cool H H H H H H H

ce GPU (MIG

U into MIG
n be used indepen :

Multi-Process Service (MPS)

Logical subdivision of A100 GPU into
partitions which can be used independently.

Increasing Flexibility

LAMMPS Overlapping Simulations

Manipulate LAMMPS Neighbor list to run
multiple replicas in the same simulation box.
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Making Oversubscription Cool - MPS

Multi-Process Service (MPS)

Supports up to 48
independent processes.

GPU  MPS Instance LAMMPS
1% Los Alamos Simulation
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Making Oversubscription Cool - MPS

Multi-Process Service (MPS)

Supports up to 48
independent processes.

GPU  MPS Instance LAMMPS
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Making Oversubscription Cool - MPS

Multi-Process Service (MPS)

Supports up to 48
independent processes.

GPU  MPS Instance LAMMPS
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Making Oversubscription Cool - MPS

Multi-Process Service (MPS)

Supports up to 48
independent processes.

GPU  MPS Instance LAMMPS
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Making Oversubscription Cool - MPS

®

Los Alamos
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GPU  MPS Instance LAMMPS

Simulation

Multi-Process Service (MPS)

300

Supports up to 48

independent processes. =

Poor total efficiency
increase after ~ 5 MPS
instances.

Total Efficiency (Matom-step/s)

200 +
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13500 atom supercell

5 10 20 P 0
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Making Oversubscription Cool — Overlapping LAMMPS

GPU LAMMPS | AMMPS
Instance Simulation
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Making Oversubscription Cool — Overlapping LAMMPS

GPU LAMMPS | AMMPS
Instance Simulation
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Making Oversubscription Cool — Overlapping LAMMPS

GPU LAMMPS | AMMPS
Instance Simulation
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Making Oversubscription Cool — Overlapping LAMMPS

GPU LAMMPS | AMMPS
Instance Simulation
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Making Oversubscription Cool — Overlapping LAMMPS

Supports up to 32
LAMMPS Simulations

Again, poor total
efficiency
increase after ~ 5
Replicas

GPU LAMMPS | AMMPS
Instance Simulation
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Making Oversubscription Cool — Overlapping LAMMPS

300

Supports up to 32
LAMMPS Simulations | 13500 atom supercell
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Making Oversubscription Cool — Combined Models

GPU MPS LAMMPS Replica
Instance Instance
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Making Oversubscription Cool — Combined Models

. . -
. . -
° ° L
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GPU MPS LAMMPS Replica
Instance Instance
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Making Oversubscription Cool — Combined Models
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Making Oversubscription Cool — Combined Models
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Making Oversubscription Cool — Example in Copper

X

1 Replica per GPU (current method)
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Making Oversubscription Cool — Example in Copper

Ra - Example Setup:
Mo 13,500 atom supercell.
EAM interatomic potential.

1 Replica per GPU (current method)
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Making Oversubscription Cool — Example in Copper

TN Example Setup:
| 13,500 atom supercell.
EAM interatomic potential.

Optimal Packing:
13 MPS instances
13 Overlapping Sims
Total = 169 Simulations on 1 GPU!

1 Replica per GPU (current method)
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Making Oversubscription Cool — Example in Copper

Example Setup:
13,500 atom supercell.
EAM interatomic potential.

Optimal Packing:
13 MPS instances
13 Overlapping Sims
Total = 169 Simulations on 1 GPU!

Total Efficiency:
190 Matom-step/s

1 Replica per GPU (current method) 5.577 us/day
...on 1 GPU!

‘:9 Los Alamos 11/13/23 80

AAAAAAAAAAAAAAAAAA




Number of atoms

The Ongoing Battle for Efficiency
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Conclusions

« Software and hardware are inherently weak-scaling
focused.
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Conclusions

« Software and hardware are inherently weak-scaling
focused.

* Must devise ways to manipulate weak-scaling into
strong(-ish) scaling to reach longer timescales.
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Conclusions

Number of atoms

Software and hardware are inherently weak-scaling

WA Desired Science
focused. 109 F

L

fs ps ns upus ms s ks

Timescale

Must devise ways to manipulate weak-scaling into

strong(-ish) scaling to reach longer timescales. @ ’
X w&/&

Novel oversubscription frameworks coupled with AMD
allows us to reach new levels of computational
efficiency on GPU-based HPCs.

This can allow us to achieve scientific insight
previously unattainable.
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